Janvier 2009 Site web

Formulaire de statistiques

I. <u>Statistiques descriptives :</u>

Moyenne arithmétique : (population: $m_x = \mu$) (échantillon = $\overline{x} = M_x$)

Somme des carrés des écarts :

 $SCE = \sum_{i=1}^{n} (x_i - M_x)^2$

Excel FR =SOMME.CARRES.ECARTS(série) Excel NL =DEV.KWAD (série) Excel EN =DEVSQ(série)

Variance ou carré moyen des écarts d'un échantillon :

$$S_{x;n}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - M_x)^2 = \frac{SCE}{n}$$

Excel FR =VAR.P(série) Excel NL, EN =VARP(série)

Excel NL, EN =VAR(série)

Excel FR

Estimation de la variance d'une population :

$$S_{n-1}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - M_{x})^{2} = \frac{SCE}{n-1}$$

Écart-type de l'échantillon :

$$S_{x;n} = \sqrt{S_{x;n}^2}$$

Excel FR =ECARTYPEP(série) Excel NL, EN =STDEVP(série)

=VAR(série)

Écart-type de la population :

$$S_{x;n-1} = \sqrt{S_{x;n-1}^2}$$

Excel FR =ECARTYPE(série) Excel NL, EN =STDEV(série)

Coefficient de variation :

$$CV = \frac{S_x}{M_x}$$

Somme des produits des écarts :

n	Excel FR =SOMME((zone des X- M_X)*(zone des Y- M_y))
$SDE - \sum \left[(m - M) (m - M) \right]$	Excel NL =SOM((zone des X- M_X)*(zone des Y- M_y))
$SFE - \sum \left[(x_i - M_x) (y_i - M_y) \right]$	Excel EN =SUM((zone des X- M_X)*(zone des Y- M_y))
i=1	Calcul matriciel · Mac· nomme+enter · PC· ctrl+shift+enter

Covariance ou produit moyen des écarts :

~ SPE	Excel FR =COVARIANCE(série)
$S_{x,y} = \frac{1}{2}$	Excel NL =COVARIANTIE(série)
n n	Excel EN =COVAR(série)

 $\label{eq:coefficient} \textbf{Coefficient de détermination : } Note: formule Excel valable uniquement pour un modèle linéaire Y_i = B_0 + B_1 X_i$

Coefficient de corrélation : cas particulier du modèle linéaire : $r = \sqrt{R^2}$

$$r = \frac{S_{x,y}}{S_x \cdot S_y} = \frac{SPE}{n \cdot S_x \cdot S_y}$$

Excel FR =COEFFICIENT.CORRELATION(série) Excel NL =CORRELATIE(série) Excel EN =CORREL(série)

Droite des moindres carrés : $Y_i = B_0 + B_1 \cdot X_i$

_n SPE	Excel FR =PENTE(série)
$B_1 = \frac{1}{CCE}$	Excel NL =RICHTING(série)
SCE_x	Excel EN =SLOPE(série)

 $B_0 = M_y - B_1 \cdot M_x$ Excel FR = ORDONNEE.ORIGINE(série) Excel NL = SNIJPUNT(série) Excel EN = INTERCEPT(série)

II. Probabilités :

Loi des probabilités totales	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
Loi des probabilités composées	$P(A \cap B) = P(A) \cdot P(B/A) = P(B) \cdot P(A/B)$
Recomposition de P(A)	$P(A) = P(A \cap B) + P(A \cap B^*)$
Événements incompatibles	$P(A \cap B) = 0$
Événements indépendants	P(A B)=P(A) ou $P(B A)=P(B)$

III. Les variables aléatoires discontinues :

Variable aléatoire BinomialeX va Bi (n ; π)		
Espérance de X	$E(X) = n \cdot \pi$	
Variance de X	$var(X) = n \cdot \pi \cdot (1 - \pi)$	
Nombre de combinaisons	$C_n^x = \frac{n!}{x!(n-x)!}$ Excel FR, EN = FACT(n)/(FACT(x)*FACT(n-x)) Excel NL = FACULTEIT(n)/(FACULTEIT(x)*FACULTEIT(n-x))	
Probabilité	$P(X=x_i)=C_n^x \cdot \pi^x \cdot (1-\pi)^{n-x}$ Excel FR =LOLBINOMIALE(x;n; π ;cumulatif) Excel NL =BINOMIALE.VERD(x;n; π ;cumulatif) Excel EN =BINOMDIST(x;n; π ;condition) Pour P(X=xi) cumulatif= FR :FAUX; NL: VERVALSING; EN: FALSE. Pour P(X <xi) :vrai:="" cumulatif="FR" en:="" nl:="" th="" true<="" ware:=""></xi)>	

Variable aléatoire de Poisson X va Po (µ)	
Probabilité	$P(X=x) = \frac{e^{-\mu} \cdot \mu^{x}}{x!}$ Excel FR =LOI.POISSON(x;µ;cumulatif) Excel NL, EN =POISSON(x;µ;cumulatif) Pour P(X=xi) cumulatif= FR :FAUX; NL: VERVALSING; EN: FALSE. Pour P(X≤xi) cumulatif= FR :VRAI; NL:WARE; EN: TRUE.
Espérances	$E(X) = \sigma_x^2 = \mu$

IV. Les variables aléatoires continues :

Variable aléatoire Normale		
	Réduction d'une variable lorsqu'elle représente un individu pour X v.a. N (μ ; σ ²) en Z v.a. N (0;1)	$Z = \frac{X - \mu}{\sigma}$
	Réduction d'une variable lorsqu'elle représente la valeur moyenne d'un échantillon de n individus pour X va $N(\mu;\sigma^2/n)$ en Z v.a. $N(0;1)$	$Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}$

V. Inférence statistique :

Test α-ß	
Estimation de n	$n \ge \frac{(Z_{1-\alpha} + Z_{1-\beta})^2 \cdot \sigma^2}{(\mu_0 - \mu_1)^2}$

A: comparaison d'une moyenne à un standard - test de conformité		
σ^2 connue	$Z_{obs} = \frac{M_{xobs} - \mu_{H_0}}{\frac{\sigma}{\sqrt{n}}}$	$\begin{array}{l} \textbf{Obtenir le } Z_{\text{théorique}}:\\ \text{Table de Student, pour n = ∞}\\ \textbf{ou}\\ \text{Excel FR =LOI.NORMALE.STANDARD.INVERSE(probabilité)}\\ \text{Excel NL =STAND.NORM.INV(probabilité)}\\ \text{Excel EN =NORMSINV(probabilité)}\\ \text{avec probabilité = } P(Z \leq Z_{\text{théorique}}) \end{array}$
σ^2 inconnue On prend donc S ² comme estimateur	$t_{obs} = \frac{M_{xobs} - \mu_{H_0}}{\frac{S}{\sqrt{n}}}$	Obtenir le $t_{théorique}$:Table de Student, pour k = n-1 degrés de libertés (dl)ouExcel FR =LOI.STUDENT.INVERSE(probabilité;k)Excel NL =T.INV(probabilité;k)Excel EN =TINV(probabilité;k)excel EN =TINV(probabilité;k)avec probabilité = P(t≤t_{théorique}) et k = degrés de libertés = n-1

B: comparaison de variances issues d'échantillons indépendants		
Pour deux variance	s :	
$F_{obs} = \frac{S_{max}^2}{S_{min}^2}$	Calculer le Fobs :Excel FR, NL, EN=MAX(série des variances)/MIN(série des variances)Obtenir le F _{théorique} :Table de Fisher, pour k = $(n-1)$ degrés de libertés (dl) de S ² _{max} et r = $(n-1)$ dl de S ² _{min} ouExcel FR =INVERSE.LOI.F(alpha;k;r)Excel NL =F.INVERSE(alpha;k;r)Excel EN =FINV(alpha;k;r)Excel NL =F.INVCalpha;k;r)excel AL = 1 - confiance, en valeur décimale (ex: alpha = 0,05 si confiance à 95%)	
Pour deux variances ou plus, issues d'échantillons de même taille :		
S^2	Calculer le Hobs : Excel FR, NL, EN =MAX(série des variances)/MIN(série des variances)	
$H_{obs} = \frac{S_{max}}{S_{min}^2}$	Obtenir le H _{théorique} : Table de Hartley, pour n_a variances comparées et $dl = (n_i-1)$ Pas de formule en Excel.	

C : comparaison de proportions				
$\chi_{obs}^{2} = \sum_{i=1}^{k} \left(\frac{(f_{i_{obs}} - f_{i_{ihéo}})^{2}}{f_{i_{ihéo}}} \right)$	Obtenir le $\chi^2_{théorique}$: $\chi^2_{théorique} = \chi^2_{(k-1)\cdot(r-1); 1-\alpha}$ Table de χ^2 , pour (k-1).(r-1) dl et une probabilité 1- α ou Excel FR =KHIDEUX.INVERSE(alpha;dl) Excel NL =CHI.KWADRAAT.INV(alpha;dl) Excel EN =CHIINV(alpha;dl) Attention dans la formule Excel c'est alpha qu'il faut signaler !			

VI. ANOVA I :

Source de variablité	SCE	dl	СМ	\mathbf{F}_{obs}	$\mathbf{F}_{ ext{table}}$
Totale	Excel FR =SOMME.CARRES.ECARTS(tous les individus) Excel NL =DEV.KWAD(tous les individus) Excel EN =DEVSQ(tous les individus)	N - 1			
Factorielle	$ \begin{array}{l} Excel \ FR = n_i^* \ SOMME.CARRES.ECARTS(toutes \ les \ M) \\ Excel \ NL = n_i^* DEV.KWAD(toutes \ les \ M) \\ Excel \ EN = n_i^* DEVSQ(toutes \ les \ M) \end{array} $		$=\frac{SCE_{F}}{dl_{F}}$	$\frac{CM_{F}}{CM_{R}}$	$F_{dl_F; dl_R; 1-\alpha}$ avec
Résiduelle	Excel FR = (n_i-1) * SOMME(toutes les S ²) Excel NL = (n_i-1) * SOM(toutes les S ²) Excel FR = (n_i-1) * SUM(toutes les S ²)	$N - n_a$	$=\frac{SCE_{R}}{dl_{R}}$		$\begin{aligned} k &= dl_F \\ r &= dl_R \end{aligned}$

avec

 $n_i = nombre \ d'individus \ par \ échantillon$

 $n_a = nombre \ d'échantillons$

N = nombre total d'individus

Note: le F_{théorique} peut aussi être trouvé avec l'instruction Excel suivante:

Excel FR =INVERSE.LOI.F(alpha;dl_F;dl_R) Excel NL =F.INVERSE(alpha;dl_F;dl_R)

Excel EN =FINV($alpha; dl_F; dl_R$)

avec alpha = 1 - confiance, en valeur décimale (ex: alpha = 0.05 si confiance à 95%)

Compléments ANOVA I aléatoire :

Variance entre échantillons	$\sigma_a^2 = \frac{E(CM_F) - E(CM_R)}{n_i}$			
Variance entre réplications	$\sigma^2 = E(CM_R)$			
	formule simplifiée	formule complète		
Intervalle de confiance	$M_x \pm t_{n_a-1;1-\alpha/2} \cdot \sqrt{\frac{CM_F}{N}}$	$M_x \pm t_{n_a-1;1-\alpha/2} \cdot \sqrt{\frac{\sigma^2}{n_a \cdot n_i} + \frac{\sigma_a^2}{n_a}}$		
Nombre de réplicas optimum	$n_i = \sqrt{\frac{c_a \cdot \sigma^2}{c \cdot \sigma_a^2}}$			
Nombre d'échantillons optimum	$n_a = \frac{16(\frac{\sigma^2}{n_i} + \sigma_a^2)}{\Delta^2}$			

VII. ANOVA I et Régression linéaire :

Sour varia	ce de abilité	SCE	dl	СМ	F _{observé}	$\mathbf{F}_{ ext{table}}$	
Totale	į						
Résidi	nelle	voir ANOVA 1					
Factor	rielle						
Linéai	ire	$=\frac{SPE^2}{SCE_x}$	1	$=\frac{SCE_{lin}}{dl_{lin}}$	$\frac{CM_{lin}}{CM_R}$	$F_{dl_{lin};dl_{R};1-lpha}$	
Non linéaire		$= SCE_F - SCE_{lin}$	$n_F - n_{lin}$	$=\frac{SCE_{NL}}{dl_{NL}}$	$\frac{CM_{_{NL}}}{CM_{_{R}}}$	$F_{dl_{\scriptscriptstyle NL};dl_{\scriptscriptstyle R};1-lpha}$	
Avec							
SPE	SPE $ \begin{array}{l} & \operatorname{Excel} \operatorname{FR} = \operatorname{SOMME}((\operatorname{zone} \operatorname{des} X - M_x)^*(\operatorname{zone} \operatorname{des} Y - M_y)) \\ & \operatorname{Excel} \operatorname{NL} = \operatorname{SOM}((\operatorname{zone} \operatorname{des} X - M_x)^*(\operatorname{zone} \operatorname{des} Y - M_y)) \\ & \operatorname{Excel} \operatorname{EN} = \operatorname{SUM}((\operatorname{zone} \operatorname{des} X - M_x)^*(\operatorname{zone} \operatorname{des} Y - M_y)) \\ & \operatorname{Calcul} \operatorname{matriciel} : \operatorname{Mac:} \operatorname{pomme+enter} ; \operatorname{PC:} \operatorname{ctrl+shift+enter} \end{array} $						
SCE _x	Excel FR = n_i * SOMME.CARRES.ECARTS(série de x) Excel NL = n_i * DEV.KWAD(série de x) Excel EN = n_i * DEVSQ(série de x)						

VIII. ANOVA II croisée fixe : Où B et C sont les deux critères fixes

Source de variabilité	SCE	dl	СМ	F _{observé}	$\mathbf{F}_{ ext{table}}$
Totale Résiduelle Factorielle	voir ANOVA 1				
В	Excel FR = $n_{i,echB}$ * SOMME.CARRES.ECARTS(moyennes de B) Excel NL = $n_{i,echB}$ * DEV.KWAD(moyennes de B) Excel EN = $n_{i,echB}$ * DEVSQ(moyennes de B)	n _{catéB} -1	$\frac{SCE_{B}}{dl_{B}}$	$\frac{CM_{B}}{CM_{R}}$	$F_{dl_{B};dl_{R};1-lpha}$
С	Excel FR = $n_{i,echC}$ * SOMME.CARRES.ECARTS(moyennes de C) Excel NL = $n_{i,echC}$ * DEV.KWAD(moyennes de C) Excel EN = $n_{i,echC}$ * DEVSQ(moyennes de C)	n _{catéC} -1	$\frac{SCE_{C}}{dl_{C}}$	$\frac{CM_{C}}{CM_{R}}$	$F_{dl_c;dl_k;1-\alpha}$
Interaction BC	=SCE _F $-$ SCE _B $-$ SCE _C	$dl_F - dl_B - dl_C$	$\frac{SCE_{BC}}{dl_{BC}}$	$\frac{CM_{BC}}{CM_{R}}$	$F_{dl_{BC};dl_{R};1-lpha}$

IX. Contrastes de Scheffé :

X. ANOVA : contrastes et modèles

Écrire le modèle en notant toutes les sources de variabilité.

Critères fixes en minuscules, critères aléatoires en majuscules et hiérarchisation entre parenthèses. $X_{(ijk)l} = \mu + a_i + B_{(i)j} + c_k + ac_{ik} + Bc_{(i)jk} + E_{(ijk)l}$

Règle 1 : Construction d'une table avec autant de lignes qu'il y a de sources de variabilité. Adjonction d'une colonne à gauche des sources de variabilité.

delta² : pour les critères fixes sigma²: pour les critères aléatoires

Adjonction d'autant de colonnes à droite des sources de variabilité qu'il y a d'indices (de facteurs) dans le modèle (i, j, k...).

Si l'indice :

- n'est pas repris dans le membre en tête de ligne : mettre la valeur de l'indice en question
- est repris dans le membre en tête de ligne, se rapporte à un critère fixe (minuscule) et n'est pas entre parenthèses : mettre la valeur 0.
- ne répond pas aux conditions précédentes : mettre la valeur 1.

Règle 2 : Adjonction d'autant de colonnes à droite des indices qu'il y a de sources de variabilité dans le modèle.

Considérer uniquement les sources de variabilité qui ont au moins tous les indices repris en tête de ligne.

Règle 3 : Pondération des sources de variabilité introduites dans la table à l'étape précédente.

Masquer les colonnes correspondant aux indices qui ne sont pas entre parenthèses Pondérer chaque terme par le produit des indices non masqués.

Règle 4 : Détermination des degrés de liberté de chaque v.a. de Fisher

Effectuer le produit de la valeur maximale de tous les indices représentés en tête de ligne, après avoir retiré 1 à ceux qui ne sont pas entre parenthèses.

Conclusions